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Abstract An asymptotic series for the electrostatic energy E1(N ) of an N-gonal
charge distribution, i.e., a set of unit charges occupying vertices of a regular N-gon
with a unit circumradius, is derived. Application of Padé approximants to truncations of
this expansion produces compact approximate formulae capable of estimating E1(N )

with great accuracy. A closed-form expression for the energy of electrostatic inter-
action of two polygonal charge distributions is obtained from the respective Fourier
series. The availability of this expression allows for a rapid calculation of the relevant
energy with computational effort independent of the numbers of particles involved.

Keywords Polygonal charge distribution · Electron–electron repulsion

1 Introduction

Systems of classical particles with isotropic pairwise interactions confined by isotro-
pic external potentials are well known to exhibit intricate patterns of particle positions
at equilibrium geometries. These patterns are often very sensitive to the exact nature
of both the interparticle and the confining potentials [1]. However, 2D assemblies
of equicharged particles interacting with external potentials of cylindrical symmetry
almost invariably involve either patterns of polygons inscribed on concentric rings or
fragments of triangular lattices, the latter being more prevalent in species composed
of larger numbers of particles [1–15]. Formation of polygonal patterns is observed
in both experimental measurements and numerical studies of such diverse systems
as electrons in quantum dots at the classical limit (the Wigner crystals) [2–7], ions in
dusty plasmas [8–10], triboelectrically charged macroscopic objects [11], and vertices
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in mesoscopic superconducting disks [12,13]. These patterns persist upon inclusion
of small-magnitude quantum and finite-temperature effects [2,6,15].

In many cases, the polygonal patterns of equicharged particles are either perfectly
[11] or sufficiently regular [3,12–14] to permit formulation of simple mathematical
models describing their geometries and energetics. Unfortunately, survey of the avail-
able literature reveals complete absence of rigorous analytical studies of such models.
The first step towards bridging this unsatisfactory gap in knowledge requires detailed
understanding of electrostatic energetics of polygonal charge distributions. In this
paper, some results relevant to this subject are presented.

2 Theory

Consider an N-gonal charge distribution, i.e., a set of unit point charges occupying the
vertices of a regular N-gon with a unit circumradius. The sum of electrostatic interac-
tion energies of these charges constitutes the intraring energy E1(N ). Another situation
of physical interest concerns interaction of two polygonal charge distributions consist-
ing of N1 and N2 unit point charges occupying polygons with the circumradii r1 and r2,
respectively. Such interaction gives rise to the interring energy E12(N1, N2, r1, r2, φ),
where φ is the angle of rotation measuring the relative angular positions of the first
vertices of the polygons in question, which are assumed to share a common center.
Efficient computation of E1(N ) and E12(N1, N2, r1, r2, φ) that circumvents the need
for single or double summations calls for two distinct mathematical approaches that
are presented below.

2.1 The intraring energy

The explicit expression for E1(N ) reads

E1(N ) = N

4
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where

G(x) = sin−1 x − x−1
(

1 − x

π

)−1
. (2)

The first sum of the r.h.s. of Eq. (1) is readily evaluated as
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where γ is the Euler-Mascheroni constant and �(x) is the digamma function [16]. On
the other hand, computation of the second sum involves the Euler-Maclaurin formula
[17],
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)
=

N∫

0
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)
dk − 1

2
[ G(0) + G(π) ]

+
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where Bj is the j th Bernoulli number. When combined, Eqs. (1)–(4) yield
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However, since
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=
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the derivatives of G(x) that enter Eq. (5) are given by

G(2 j−1)(0) = (−1) j+1 (22 j−1 − 1)B2 j

j
− (2 j − 1)!

π2 j
, (7)

affording the expression
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The final substitution [16]
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yields the asymptotic series representation
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E1(N ) = N 2
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truncation of which produces quite accurate estimates of E1(N ) even for small values
of N. The series (10) improves upon the asymptotics of N 2

2 π
lnN obtained as a corollary

from the Martinez-Finkelshtein theorem [18].
Further improvement in the accuracy of the closed-form approximations for E1(N )

is attained by retaining the leading terms of the r.h.s. of Eq. (10) up to the constant term
and replacing the power series in N−2 by Padé approximants with coefficients obtained
by requesting that the approximate energies E1(N ) are exact for 1 ≤ N ≤ Nmax . In
particular, the approximate expression,

E1(N ) ≈ N 2

2π

(
γ + ln

2N

π

)
− π

144
+

3∑

j=1

a j

b j + N 2 , (11)

corresponding to Nmax = 6, where a1 = 1.5583690776957 · 10−3, a2 =
8.9401249562521 · 10−4, a3 = 5.9700243915101 · 10−5, b1 = 1.6643500081388·
10−1, b2 = 8.9923320030262 · 10−1, and b3 = 3.0403440002549, reproduces the
exact values of the intraring energies for N > 6 with the relative error of less than
7 · 10−14.

2.2 The interring energy

The explicit expression for E12(N1, N2, r1, r2, φ), reads
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(12)

In terms of dimensionless parameters, Eq. (12) can be rewritten as
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where
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The limiting behavior

lim
N1→∞, N2→∞ F(N1, N2, a, φ) = 2

π

1√
a

K

(
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a

)
, (15)

where K (x) is the complete elliptic integral of the first kind [16], can be readily demon-
strated by replacing the double summation in Eq. (14) with the respective integration.
It is equivalent to the previously derived [4] more complicated expression involving
the hypergeometric function 2 F1.

After some manipulations, application of the Laplace expansion [19] to Eq. (12)
yields
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where L ≡ L(N1, N2) is the least common multiple of N1 and N2, and the identity
[16]
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has been used. Although the summation over m in Eq. (16) cannot be carried out
explicitly, application of the well-known integral representation of 2 F1 [16] produces
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With the help of the representation (18), the dependence of F(N1, N2, a, φ) on φ

is readily analyzed. In particular, it turns out that, as expected on physical grounds
[compare Eq. (12)], F(N1, N2, a, φ) possesses a period of 2π

L with respect to φ, the
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L , . . .. The respective second-order derivatives with respect
to φ equal
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The representation (18) is not well-suited for numerical computations of F(N1, N2,

a, φ). However, employment of an alternative formula,
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in conjunction with trapezoidal quadrature produces accurate results with relatively
small numbers of the quadrature points.

3 Discussion and conclusions

It is instructive to compare the asymptotic series (10) for the energy of the optimal
distribution of equicharged particles on a circle with a unit radius with its 3D counter-
part (known as the solution of the Thomson problem [20]). Unlike in the latter case,
where the energy scales like the squared number of particles at the limit of N → ∞,
the leading term in Eq. (10) contains a logarithmic contribution. However, the 2D case
is amenable to exact asymptotic analysis, whereas neither the general solution of the
Thomson problem nor the exact asymptotics of the corresponding energy beyond the
first two leading terms are currently known [21].

The availability of the Fourier expansion (16) for the dependence of the interac-
tion energy of two polygonal charge distributions on their relative angular positions
allows for detailed analysis of rotational barriers that play a crucial role in melting of
Wigner crystals due to quantum and finite-temperature effects [2,14]. In particular,
the availability of the expressions (19)–(22) makes it possible to readily estimate the
magnitudes of rotational barriers and the Hessian eigenvalues describing the rotational
motion. For example, combining these expressions at the limit of a → ∞ immediately
reproduces several of the approximate equations presented in Ref. [14] and permits
derivation of the leading corrections to them. Similarly, the failure of the model intro-
duced in Ref. [3] to accurately estimate energies of 2D Coulomb crystals is readily
accounted for by the strong deviation of the angle-independent term in the r.h.s. of
Eq. (13) combined with Eq. (16) from its r1 → 0 limit. From the practical stand-
point, it is important to mention that employing numerical quadrature in evaluation
of the integral that enters Eq. (23) produces a fast algorithm for the computation of
E12(N1, N2, r1, r2, φ) with computational cost independent of the numbers of particles
involved.

In light of these observations, we believe that the present results are slated to stim-
ulate and aid future formulations and detailed analyses of simple geometrical models
that accurately describe self-assemblies of equicharged particles.
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